wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The function f:RR satisfies f(x2).f′′(x)=f(x).f(x2) for all real x. Given that f(1)=1 and compute the value of f(1)+f′′(1).

Open in App
Solution

Given : f(x2).f′′(x)=f(x).f(x2)x(1) and f(1)=1

Since f(1)=1

Assumptions :

Let f(x)=1xsinceheref(1)=1

f(x)=1x2f(1)=11=1

f′′(x)=+1x3f(1)=11=1

f(x2)=1x2

f(x2)=1x3

f(x2).f′′(x)=f(x).f(x2)

1x2.1x3=1x2.1x3

1x5=1x5

Therefore , f(x)=1x

f(1)+f′′(1)1+10

Hence the answer is zero [0].

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon