The function f satisfying f(b)−f(a)b−a≠f′(x) for any x∈(a,b) is :
A
f(x)=x1/3, a=−1, b=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(x)=1/x; a=1, b=4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(x)=x|x|; a=−1,b=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D None of these f(b)−f(a)b−a≠f′(x)x∈(a,b)(i)f(x)=x1/3,a=−1,b=1⇒f(1)−f(−1)1−(−1)=f(1)−f(−1)2=(1)1/3−(−1)1/32=1−(−1)2=1⇒f′(x)=13x−2/3⇒13x−2/3=1⇒x−2/3=3⇒(x−2/3)−3/2=3−3/2⇒x=(13)3/2
Clearly (13)3/2∈[−1,1]. Hence, this does not hold true.