The correct option is A 3
Applying L'Hospital's Rule,
=limx→0(3sin3x.cosx(cos2x)12.13(cos3x)−23+2sin2xcosx(cos3x)1312(cos2x)−12+(cos2x)12(cos3x)13sinx2x)
Applying L'Hospitals Rule again, here we have ignored the terms containing sinx as x→0 when sinx→0
=limx→0(9cos3x.cosx(cos2x)12.13(cos3x)−23+4cos2xcosx(cos3x)1312(cos2x)−12+(cos2x)12(cos3x)13cosx2)
=9.13+4.12+12=3+2+12
=3