The function fx=logx+x2+1 is
an even function
an odd function
a periodic function
neither an even nor an odd function
Explanation for the correct option:
Given function is fx=logx+x2+1
A function
is odd if f-x=-fx⇒fx+f-x=0
is even if f-x=fx⇒fx+f-x=2fx
We have,f-x=log-x+-x2+1=log-x+x2+1
Therefore,fx+f-x=logx+x2+1+log-x+x2+1=logx+x2+1-x+x2+1=logx2+12-x2∵a+ba-b=a2-b2=logx2+1-x2=log1=0
Thus, f(x) is odd.
Hence, option(B) i.e. an odd function is correct.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2