The general solution of a differential equation of the type dxdy+P1x=Q1 is
(a) ye∫P1 dy=∫(Q1e∫P1 dy)dy+C
(b) ye∫P1 dx=∫(Q1e∫P1 dx)dx+C
(c) xe∫P1 dy=∫(Q1e∫P1 dy)dy+C
(d) xe∫P1 dx=∫(Q1e∫P1 dx)dx+C
The integrating factor of the given differential equation dxdy+P1x=Q1 is e∫P1dy
The general solution of the differential equation is given by
x.IF=∫(Q×IF)dy+C ∴xe∫P1dy=∫(Q1e∫P1dy)dy+C
Hence, the correct option is (c).