The general solution of equation 4cot2θ=cot2θ−tan2θ is
Given, 4cot2θ=cot2θ−tan2θ 4(1−tan2θ)tanθ=2(1−tan2θ) 4tanθ−4tan3θ=2−2tan4θ tan4θ−2tan3θ+2tanθ−1=0 tanθ=1,1,1,−1 tanθ=tanπ4 or tan3π4 θ=nπ±π4 θ=nπ±3π4
so, LCM ⇒ θ=nπ±π4
Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12