wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The general solution of tanxsinx=1tanxsinx

A
x=nπ+π4x=nπ+(1)n(π2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x=nπ4π4x=nπ+(1)n(π2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=nπ+π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x=nπ+π6x=nπ+(1)n(π2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A x=nπ+π4x=nπ+(1)n(π2)
tanxsinx=1tanxsinx
sinxcosxsinx=1sinxcosxsinx
sinxsinxcosx=cosxsin2
sinx+sin2x=cosx+cosxsinx
sinx(1+sinx)=cosx(1+sinx)
(sinxcosx)(1+sinx)=0
sinxcosx=0|sinx=1=sin(π2)
tanx=1 | x=nπ+(1)n(π2)
tanx=tanπ4
x=nπ+π4
OR
tanx+tanxsinx=1+sinx
tanx(1+sinx)=1+sinx
(1+sinx)(tanx1)=0
sinx=1Or tanx=1
x=nπ+(1)n(π2) x=nπ+π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon