The given figure shows a trapezium in which AB is parallel to DC and diagonals AC and BD intersect at point P. If AP : CP = 2 : 3,
Ar(ΔCPD):Ar(ΔAPB)= ?
Given: AP : CP = 2 : 3
⇒ CPAP=32
In ΔAPB and ΔDPC,
∠APB=∠DPC (vertically opposite angles)
∠PAB=∠PCD (alternate angles)
∴ΔAPB∼ΔCPD (by AA similarity criterion)
∴areaΔCPDareaΔAPB=CP2AP2=3222=94
⇒ area ΔCPD : area ΔAPB=9:4