The correct option is
D y=xlnx, Domain
:(0,∞)
x=1⇒y=0
So, graph intersect, x -axis at x=1 limx→0+(xlnx)=0 and limx→∞(xlnx)=∞
y′=1+lnx=0⇒x=1e
y′′=1x
y′′(1e)=e>0
⇒x=1e is a point of local minima
Also y′′>0,∀x∈(0,∞)
Hence the curve is concave up ∀x∈(0,∞)
So, option (c) is correct