The graphs of y=sinx,y=cosx,y=tanx & y=cscx are drawn on the same axes from 0 to π/2. A vertical line is drawn through the points where the graphs of y=cosx & y=tanx cross, intersecting the other two graphs at the points A & B. The length of the line segment AB is ?
y=cosxandy=tanxintersect
cosx=tanx
cosx=sinxcosx
cos2x=sinx
1−sin2x=sinx
sin2x+sinx−1=0
sinx=−1±√12−4×1(−1)2×1
sinx=−1±√52
sinx=−1+√52
equationoflinepassingthroughthepointy=cosxandy=tanxisx=h
sinh=−1+√52=BC
cosech=1sinh=2−1+√5=AC
AB=AC−BC=2−1+√5−−1+√52
4−(−1+√52)2(−1+√5)
4−(1+5−2√5)2(−1+√5)
4−6(+2√5)2(−1+√5)
−2+2√5−2+2√5