Let I=∫10x31+x8dx
Now, ∫x31+x8dx=14∫d(x4)1+x8=14tan−1(x4)+c
I=∫10x31+x8dx=(14tan−1(x4)+c)10
=[14tan−1(1)+c]−[14tan−1(0)+c]
=14tan−1(1)
=14⋅π4=π16
Hence, ∫10x31+x8dx=π16
The value of the definite integral ∫1−1dx(1+ex)(1+x2) is