The integral ∫cos(logex)dx is equal to: (where C is a constant of integration)
A
x[cos(logex)+sin(logex)]+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x[cos(logex)−sin(logex)]+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2[sin(logex)−sin(logex)]+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x2[cos(logex)+sin(logex)]+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dx2[cos(logex)+sin(logex)]+C I=∫cos(logex)dx Put logex=t ⇒1xdx=dt ⇒dx=etdt ⇒I=∫cost.etdt =cost∫etdt−∫(ddt(cost)∫etdt)dt =cost.et+∫sintetdt ⇒I=etcost+etsint−∫cost.etdt ⇒2I=etcost+etsint