The largest interval for which x22−x19+x14−x5+1>0 is
(−∞,∞)
If x≤0
x22≥0,x14≥0,x19≤0,x5≤0⇒x22−x19+x14−x5+1>0
If 0<x<1, then x5<1 and hence
x22−x19+x14−x5+1=x22+x14(1−x5)+(1−x5)
So, x22−x19+x14−x5+1>0 when 0<x<1.
If x>1; then x3>1
x22−x19+x14−x5+1=x19(x3−1)+x5(x9−1)+1>0
Hence, x22−x14−x5+1>0 for −∞<x<∞.