The correct option is A 7
Let A=(1,2,3) and B=(6,7,7)
Given: x−63=y−72=z−7−2=λ
Let us take foot of the perpendicular on the line as P=(3λ+6,2λ+7,−2λ+7)
Direction ratio's of line which is perpendicular to given line PA=(3λ+6−1,2λ+7−2,−2λ+7−3)
i.e. D.R's of PA=(3λ+5,2λ+5,−2λ+4)
and the direction ratio's of given line are (3,2,−2)
These two lines are perpendicular, so
(3λ+5)×3+(2λ+5)×2+(−2λ+4)×(−2)=0
⇒17λ+17=0
∴λ=−1
So point is P=(−3+6,−2+7,2+7)
P=(3,5,9)
So, perpendicular distance AP is =√(3−1)2+(5−2)2+(9−3)2=7