The correct option is
D −5013To find the intersection points of circle and the line we need to solve their equations simultaneously.∵2x+3y=1⇒3y=1−2x⇒y=1−2x3
Putting this value of y in equation of circle, x2+(1−2x3)2=4
⇒9x2+1+4x2−4x=36⇒13x2−4x−35=0
∴x=−(−4)±√(−4)2−4×13×(−35)2×13=4±6√5126=2±3√5113
∴y=1−2[2±3√5113]3⇒y=3∓2√5113
Thus the coordinates of A and B are as follows:- A≡(2+3√5113,3−2√5113) and B≡(2−3√5113,3+2√5113)
Now, equation of circle with ends of diameter given is:-(x−x1)(x−x2)+(y−y1)(y−y2)=0
⇒(x−2+3√5113)(x−2−3√5113)+(y−3−2√5113)(y−3+2√5113)=0
⇒x2−[2+3√5113+2−3√5113]x+(2+3√5113)(2−3√5113)+
y2−[3−2√5113+3+2√5113]y+(3−2√5113)(3+2√5113)=0
⇒x2−413x+(4−9×51169)+y2−613y+(9−4×51169)=0
⇒x2+y2−413x−613y+(4+9−(9+4)×51169)=0
⇒x2+y2−413x−613y−5013=0
Thus, c=−5013