The locus of a point whose difference of distances from points (±3,0) is 4, is :
Let p(3,o)p′(−3,o)0(x,y)
|op−op′|=4
op2+op′2−2.op.op′=16
(x−3)2+(y)2+(x+3)2+y2−2√[(x−3)2+y2][(x+3)2+y2]=16
2y2+2(x2+9)−2√(x2−9)2+y2[2(x2+9)]+y4=16
2√(x2−9)2+y2(2(x2+9))+y4=16−18−2(x2+y2)
√(x2−9)2+y2[2(x2+9)]+y4=−[2(x2+y2+2)]
(x2−92)+2y2(x2+9)+y4=(x2+y2)+1+2(x2+y2)
x4−18x2+81+2x2y2+18y2+y4=x4+y4+2x2+y2+1+2x2+2y2
18y2−2y2−18x2−2x2=1−81
20x2−16y2=80
x24−y25=1