The locus of the centre of the circle xcosα+ysinα=a and xsinα+ycosα=b
We have,
Given two equations are
xcosα+ysinα=a.......(1)
xsinα−ycosα=b.......(2)
Squaring both side and adding we get,
(xcosα+ysinα)2+(xsinα−ycosα)2=a2+b2
x2cos2α+y2sin2α+2xysinαcosα+x2sin2α+y2cos2α−2xysinαcosα=a2+b2
x2cos2α+y2sin2α+x2sin2α+y2cos2α=a2+b2
x2(cos2α+sin2α)+y2(cos2α+sin2α)=a2+b2
x2×1+y2=a2+b2
x2+y2=a2+b2
Hence, this is the locus of circle.
This is the answer.