The locus of the point of interaction of two tangents of the hyperbola x2a2−y2b2=1 which make an angle α with one another is
A
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A Let P(x1, y1) be a point in the locus. Equation of a tangent to the hyperbola is y=mx±√a2m2−b2 If this tangent passes through P theny1=mx1±√a2m2−b2⇒y1−mx1=±√a2m2−b2⇒(y1−mx1)2=a2m2−b2⇒y21+m2x21−2x1y1m=a2m2−b2⇒(x21−a2)m2−2x1y1m+(y21+b2)=0→(1) If m1,m2 are the slopes of the tangents drawn from P to the hyperbola, then m1,m2 become the roots of (1). ∴m1+m2=2x1y1x21−a2,m1m2=y21+b2x21−a2 Nowtanα=m1−m21+m1m2⇒(1+m1m2)2tan2α=(m1−m2)2⇒(1+m1m2)2tan2α=(m1+m2)2−4m1m2 ⇒[1+y21+b2x21−a2]tan2α=4x21y21(x21−a2)2−4y21+b2x21−a2⇒(x21+y21−a2+b2)2tan2α=(4x21y21−4(x21−a2)(y21+b2)⇒(x21+y21−a2+b2)tan2α=4a2y21−4b2x21+4a2b2 ∴ The equation to the locus of P is (x2+y2−a2+b2)2=(4a2y2−4b2x2+4a2b2)cot2α