The correct option is B ⎡⎣621122⎤⎦
Let, A=[1−43−2] and B=[−16−672]
Then the matrix equation is AX=B
∴|A|=[1−43−2]=−2+12=10(≠0)
So A is an invertible matrix. Also,
adjA=[−24−31]
So,
A−1=1|A|adjA=110[−24−31]
Now, AX=B
⇒A−1(AX)=A−1B
(A−1A)X=A−1B
⇒IX=A−1B
⇒X=A−1B
⇒X=110[−24−31][−16−672]=[6211/22]