The maximum value of e2+3cosx+sinx is
e2
e2-3
e4
1
Explanation for correct option:
Let, y=e2+3cosx+sinx
ex is an increasing function,so y will attain maximum value when 2+3cosx+sinx will be maximum.
We know, -a2+b2≤asinx+bcosx≤a2+b2
So, maximum value of 2+3cosx+sinx is 2+32+12=4
Hence, maximum value of y is e4
Hence the correct option is option C.
Statement (1): Maximum value of sin2x + cos2y is 2
Statement (2): Maximum value of 2 sec2z is 2