The maximum value of f(x)=2sinx+cos2x,0≤x≤π2 occurs at xis
0
π6
π2
None of these
Explanation for the correct options:
Solve for the maximum value of f(x)=2sinx+cos2x,0≤x≤π2 occurs at xis
f(x)=2sinx+cos2x
On differentiating w.r.t x, we get
f'(x)=2cosx-2sin2x
Put f'(x)=0
2cosx-4sinxcosx=0[∵sin2x=2sinxcosx]2cosx(1-2sinx)=0cosx=0,-2sinx=-1cosx=0,sinx=12x=π2,x=π6f''(x)=-2sinx-4cos2x
At x=π2,f''π2=-2sinπ2-4cos2π2
=2>0; (minima)
At x=π6,f''π6=-2sinπ6-4cos2π6
=-3<0; (maxima)
Hence the maximum value of f(x)=2sinx+cos2x,0≤x≤π2 occurs at x=π6.
Hence, the correct option is option (B)
The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is:
Maximum value of expression f(x) = - x2 + 6x + 7 occur at x = __