Let the observations be x1,x2,x3,x4,x5, and x6
It is given that mean is 8 and standard deviation is 4.
⇒ Mean =¯x=x1+x2+x3+x4+x5+x66=8 ....(1)
If each observation is multiplied by 3 and the resulting observation are yi, then
yi=3xi,fori=1to6
∴ New mean ¯y=y1+y2+y3+y4+y5+y66
=3(x1+x2+x3+x4+x5+x6)6
=3×8 ........[Using (1) ]
=24
Standard deviation σ=
⎷1n6∑i=l(xi−¯x)2
∴(4)2=166∑i=l(xi−¯x)2
6∑i=l(x1−¯x)2=96.......(2)
From (1) and (2) it can be observed that
¯y=3¯x
¯x=13¯y
Substituting the values of xi and ¯x in (2) we obtain
6∑i=l(13yi−13¯y)2=96
⇒6∑i=l(yi−¯y)2=864
Therefore, variance of new observation = (16×864)=144
Hence, the standard deviation of new observations is √144=12