Let x and y be the remaining 2 observations. Then, mean = 8
⇒2+4+10+12+14+x+y7=8
⇒42+x+y=56⇒x+y=14 ...(i)
and variannce = 16
⇒17(22+42+102+122+142+x2+y2)−(Mean)2=16
⇒17(4+16+100+144+196+x2+y2)−(8)2=16
⇒17(460+x2+y2)=16+64⇒460+x2+y2=80×7
⇒x2+y2=100
Now, (x+y)2+(x−y)2=2(x2=Y2)
⇒(14)2+(x−y)2=2(100)
⇒(x−y)2=200−196=4
⇒x−y=±2
On solving Eqs. (i) and (iii), we get
x=6, 8 and y= 8, 6
Hence, the remaining 2 observations are 6 and 8.
Firstly, make a table for computation of mean deviation about mean.
ClassesMid-level(x_{i})Frequency(f_{i})fixi|xi−¯x|−|xi−45|fi|xi−x|10−2015230306020−3025375206030−40358280108040−5045146300050−60558440108060−70653195206070−807521503060∑fi=40∑fixi=1800∑fi|xi−¯x|=400
We have ∑fi=40 and ∑fixi=1800
∴¯X(mean)=∑fixi∑fi=180040=45
Now, ∑fi=|xi−¯x|=400 and ∑fi=40
∴ Mean deviation about mean =∑fi|xi−¯x|∑fi
=40040=10
Hence, the mean deviation about mean is 10.