Percentage | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 | 70−80 |
No.of students | 5 | 12 | x | 26 | y | 18 | 12 |
Percentage | Number of students | Cumulative frequency |
10−20 | 5 | 5 |
20−30 | 12 | 17 |
30−40 | x | 17+x |
40−50 | 26 | 43+x |
50−60 | y | 43+x+y |
60−70 | 18 | 61+x+y |
70−80 | 12 | 73+x+y |
73+x+y | ||
Where l is the lower limit of the median
class=40
n is the number of observation=100
cf is the cumulative frequency of class
preceding the median class=17+x
f is the frequency of the median class=26
h is the class size (assuming class size to be equal)=10
Median=l+displaystylefracfracn2−cfftimesh
49.23=40+left(displaystylefrac50−(17+x)26right)times10
49.23=40+left(displaystylefrac50−17−x26right)times10
49.23=40+displaystylefrac500−170−10x26
49.23−40=displaystylefrac500−170−10x26
9.23∗26=330−10x
239.98=330−10x
10x=33−239.98
10x=90.02
X=90.02/10
X=9.02
Hence x=9.02, Applying this value in 73+x+y=100
73+9.02+y=100
82.02+y=100
Y=100−82.02
Y=17.98
Rounding the value of x and y, the value
of x is 9 and the value of y is 18.