The minimum value of 2cosθ+1sinθ+√2tanθ in the interval (0,π2) is
Since θ∈(0,π2)∴sinθ>0,cosθ>0 and tanθ>0
Now using AM ≥ GM property
2cosθ+1sinθ+√2tanθ3≥(2cosθ×1sinθ×√2tanθ)13
⇒ 2cosθ+1sinθ+√2tanθ≥3(2√2)13
= 3((√2)2)13=3√2