The minimum value of sinx+cosx is
2
-2
12
-12
1
Find the minimum value of the given function
Given : f(x)=sinx+cosx
Multiply and divide by 2,
f(x)=212sinx+12cosxsin45°=cos45°=12=2sinxcos45°+cosxsin45°sina+b=sinacosb+cosasinb=2sinx+45°
Since the minimum value of sinx is -1.
Therefore, f(x)min=2-1
⇒ f(x)min=-2
Hence option B is the correct answer.