The most general solutions of the equation sec2x=√2(1−tan2x) are given by
sec2θ=√2(1−tan2θ)
1+tan2θ=√2(1−tan2θ)
1+tan2θ=√2−√2tan2θ
tan2θ=√2−11+√2
We know,
tanπ4=1=2tanπ81−tan2π8
tanπ8=−1±√2
tan2π8=(−1±√2)2=√2−11+√2
So, principle solution =π8
General ⇒
θ=nπ±π8