The most general solutions of the equation secx−1=(√2−1)tanx are given by
secx=(√2−1)tanx+1 1+tan2x=(3−2√2)tan2x+1+2tanx(√2−1) tan2x(2−2√2)+2tanx(√2−1)=0 tan2x(1−√2)+tanx(√2−1)=0 tanx(tanx(1−√2)+(√2−1)=0 tanx=1 x=nπ±π4
Find the general solutions of 3tan2x−1=0
Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12