The normal to the curve x=a(1−cosθ), y=asinθ at θ always passes through the fixed point
dx=asinθ.dθ
dy=acosθ.dθ
Or
−dxdy=−tanθ.
Thus
Equation of normal will be
y−asinθ=−tanθ(x−a+acosθ)
Or
cosθ.y−asinθ.cosθ=−xsinθ+asinθ−asinθcosθ
cosθ.y+sinθ.x=asinθ
Hence it passes through the fixed point (a,0).