The correct option is C 4
Given biquadratic equation: (x−5)(x−7)(x+6)(x+4)=504
Here −5+4=−7+6
∴ This equation is of the form (x−a)(x−b)(x−c)(x−d)=A, where a+b=c+d
Upon rearranging this equation to the above form we get,
(x−5)(x+4)(x−7)(x+6)=504;
⇒(x2−x−20)(x2−x−42)=504
Assuming x2−x−20=y, the equation becomes:
y(y−22)=504
⇒y2−22y−504=0
Using completing the square method,
⇒y2−2(11)y+121−121−504=0
⇒(y−11)2=625
⇒y−11=±25
⇒y−11=25 and y−11=−25
⇒y=36 and y=−14
If y=36
⇒x2−x−20=36
⇒x2−x−56=0
⇒x2−8x+7x−56=0
⇒(x−8)(x+7)=0⇒x=−7,8
If y=−14
⇒x2−x−20=−14
⇒x2−x−6=0
⇒x2−3x+2x−6=0
⇒(x−3)(x+2)=0
⇒x=−2,3
∴ The roots are −7,−2,3,8.
Thus, there are 4 distinct roots of the equation.