2ax2−4ax−2a−1=0
⇒x2−2ax−1−12a=0
Let f(x)=x2−2ax−1−12a
For exactly one root between 1 and 2
f(1)f(2)<0
⇒(1−2a−1−12a)(4−2⋅2a−1−12a)<0
Assuming 2a=t
⇒(−1)2(t+1t)(2t+1t−3)<0⇒(t2+1)(2t2−3t+1)t2<0⇒(t2+1)(2t−1)(t−1)t2<0⇒12<t<1⇒12<2a<1
Taking log2 on both sides,
−1<a<0
Checking boundary condition,
When a=0, we get
x2−x−2=0⇒x=−1,2
When a=−1, we get
x22−x4−12−1=0⇒2x2−x−6=0⇒(2x+3)(x−2)=0⇒x=−32,2
Hence, a∈(−1,0), so no integral value of a lies in this interval.