The number of pair solution (x, y) of the equation 1+x2+2x sin(cos−1y)=0 is
sin (cos−1y)=−(x+1x)2; x≠0
Only possibility is
sincos−1y=±1 & hence x =± 1
if x=1⇒sin(cos−1y)=−1
⇒ Not Possible [∵0≤cos−1y≤π]
if x=−1⇒sin(cos−1y)=1
⇒y=0
So x=−1 & y=0 is solution