The correct option is B 1
According to question,
5+|2x−1|=2x(2x−2)
Case I
2x≥1
⇒5+2x−1=2x(2x−2)
Let 2x=t
⇒5+t−1=t(t−2)
=t2−3t−4=0
⇒t=4 or −1 (invalid) (∵2x≠−1)
⇒2x=4
⇒x=2
∴ only one solution
Case II
2x<1
⇒5+1−2x=2x(2x−2)
Let 2x=t
⇒5+1−t=t(t−2)
⇒t2−t−6=0
⇒(t−3)(t−2)=0
⇒t=3,−2
2x=3 (invalid as 2x<1), or 2x=−2 (invalid)
Therefore, number of real roots is one.