The correct option is B 1
log4(x−1)=log2(x−3), where x>3
⇒log(x−1)log4=log(x−3)log2,[∵logba=logalogb]
⇒log(x−1)log22=log(x−3)log2
⇒log(x−1)2log2=log(x−3)log2
⇒log(x−1)=2log(x−3)
⇒log(x−1)=log(x−3)2,[∵xloga=logax]
⇒x−1=(x−3)2
⇒x2−7x+10=0
⇒(x−5)(x−2)=0
∵x>3∴x=5
Ans: B