The number of ways in which we can put n distinct things in two identical boxes so that no box is empty, is
A
2n−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2n−1−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2n−1−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D2n−1−1 Here,the object are different number of objects =n The objects are distributed into two (r=2) boxes. Since boxes are identical, so order is not to be considered. No box remain empty (no blank lots) Using the formula, the number of ways =1r![rn−rC1(r−1)n+...(−1)r−1.rCr−1] where r=2,n=2 Hence, the required number of ways are =2n−2C1(2−1)n+2c2(2−2)n2!