The numerator of a fraction is 3 less than its denominator. If 2 is added to both the numerator and the denominator, then the sum of the new fraction and the original fraction is (2920). Find the original fraction.
Let the numerator and denominator of the fraction by x−3 and x respectively.
∴ Original fraction =x−3x
Now, 2 is added to both the numerator and denominator.
∴ New fraction =(x−3+2)(x+2)=x−1x+2
According to the question, we have
⇒x−3x+x−1x+2=2920
⇒(x−3)(x+2)+x(x−1)x(x+2)=2920
⇒x2+2x−3x−6+(x2−x)(x2+2x)=2920
⇒2x2−2x−6(x2+2x)=2920
⇒20×(2x2−2x−6)=29×(x2+2x)
⇒40x2−40x−120=29x2+58x
⇒11x2−98x−120=0
Using Quadratic formula, x=−b±√b2−4ac2a for standard quadratic equation, ax2+bx+c=0
x=−(−98)±√(−98)2−(4×11×−120)2×11
=98±√9604+528022
=98±√1488422
=98±12222
∴x=98+12222 or, x=98−12222
x=22022=10 or, x=−2422=−1211
Denominator cannot be negative,
∴x=10
Numerator =(10−3)=7
So, the original fraction becomes (710).