The correct option is
A (
2,
1,
5)
Given,
Points of the triangle are A(2,1,5),B(3,2,3) and C(4,0,4)
Let the orthocenter be H(a,b,c)
Direction ratios of line AB=(3-2,2-1,3-5)=(1,1,-2)
Similarly Direction ratios of BC=(1,-2,1)
Direction ratios of AC=(2,-1,-1)
Now Direction ratios of OA=(a-2,b-1,c-5)
Direction ratios of OB=(a-3,b-2,c-3)
Direction ratios of OC=(a-4,b,c-4)
AS we know OA⊥BC
∴1(a−4)−2(b−1)+1(c−5)=0
→a−4−2b+2+c−5=0
→a−2b+c=7 −(1)
Similarly OB⊥AC
→2(a−3)−1(b−2)−1(c−3)=0→2a−b−c=1 −(2)
Also OC⊥AB
∴1(a−4)+1(b)−2(c−4)=0→a+b−2c=−4 −(3)
On solvinf eqs.(1),(2) and (3) we get a=2,b=1 and c=5 respectively.