The correct option is D 2x2+y2=c
y2=4ax⋯(i)⇒2ydydx=4a⋯(ii)
Eliminating a from equation (i) and (ii), we have
y2=2ydydxx⇒y=2xdydx
To find the orthogonal trajectory, replacing dydx by −dxdy, we get
⇒y=2(−dxdy)x
⇒2x dx+y dy=0
Integrating both sides, we get
⇒x2+y22=C⇒2x2+y2=c, (let c=2C)