e1=4Vsnπ sin nωt
e2=4Vsnπ sin n(ωt+ϕ)
V0=e1+e2
=4Vsnπ[sinnωt+sin(nωt+nϕ)]
V0=4Vsnπ[sin nωt+sin nωt cos nϕ+cos nωt sin nϕ]
In order to eliminate fifth harmonic
V05=0
i.e., sin 5 ωt+sin 5 ωt cos 5 ϕ+cos 5 ωt sin 5ϕ=0
To safisfy the above equation,
cos5ϕ=−1 and sin 5ϕ=0
cos 5ϕ=cosπ sin 5ϕ=sinπ
ϕ=π5; ϕ=π5
∴ The phase angle between e1 and e2 should be ϕ=π5 to eliminate fifth harmonic in the output.