The parametric form of equation of the circle x2+y2−6x+2y−28=0 is
A
x=−3+√38cosθ,y=−1+√38sinθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=√28cosθ,y=√28sinθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=−3−√38cosθ,y=1+√38sinθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x=3+√38cosθ,y=−1+√38sinθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
E
x=3+38cosθ,y=−1+38sinθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ex=3+√38cosθ,y=−1+√38sinθ Given equation is x2+y2−6x+2y−28=0 ⇒(x2−6x)+(y2+2y)−28=0 ⇒(x−3)2−9+(y+1)2−1−28=0 ⇒(x−3)2+(y+1)2=(√38)2 Hence, parametric equation of the circle will be x=3+√38cosθ, y=−1+√38sinθ