The point of intersection of the line joining the points (−3,4,−8) and (5,−6,4) with the XY-plane is
→r=→a+x(→b−→a)→a=−3^i+4^j+(−8)^k→b=5^i+(−6)^j+4^k→r=−3^i+4^j+(−8)^k+x(8^i+(−10)^j+12^k)=(8x−3)^i+(4−10x)^j+(12x−8)^k
On XY plane ^k will be 0
So 12x−8=0 it means x=23
Putting the value of x in component of ^i and ^j we get
8×23−3 and 4−10×23
73 and −83
So correct optiopn will be option A.