The correct option is
B coplanar
We know that:
The equation of the plane passing through (x1,y1,z1),(x2,y2,z2),(x3,y3,z3) is
∣∣
∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1∣∣
∣∣=0
The equation of the plane passing through (0 , -1 , -1) , (-4 , 4 , 4) , ( 4 , 5 , 1 ) is
⇒∣∣
∣
∣∣x−0y−(−1)z−(−1)(−4)−04−(−1)4−(−1)4−05−(−1)1−(−1)∣∣
∣
∣∣=0
⇒∣∣
∣∣xy+1z+1−44+14+145+11+1∣∣
∣∣=0
⇒∣∣
∣∣xy+1z+1−455462∣∣
∣∣=0
⇒(5⋅2−6⋅5) x−((−4)⋅2−5⋅4) (y+1)+((−4)⋅6−5⋅4) (z+1)=0
⇒(10−30) x−((−8)−20) (y+1)+((−24)−20) (z+1)=0
⇒(−20)x−(−28) (y+1)+(−44) (z+1)=0
⇒−20x+28y−44z−16=0
⇒−5x+7y−11z−4=0.................(1)
Substituting the last point (3 , 9 , 4) in eq(1), we get
=−5⋅3+7⋅9−11⋅4−4
=−15+63−44−4=0
The equation of plane is satisfied by these points.
Therefore, these points are coplanar.