Let the number of people
at a given year 't' be N
Then,
dNdt=kN where k is the
proportionality constant.
dNN=kdt
∫NN0dNN=∫t0kdt
ln(NN0)=kt
N=N0ekt ...(i)
If N0=2×104 and t=2004−1999
t=5years and
N=2.5×104
Hence
lnNN0=kt
ln(2.5×1042×104)=5k
ln(1.25)=5k
k=15ln(1.25)years−1
Now
t=2009−1999
=10years
Hence
ln(N2×104)=15ln(1.25)t
ln(N2×104)=15ln(1.25)×10
ln(N2×104)=ln(1.25)×2
ln(N2×104)=ln(1.252)
N2×104=1.252
N=2×(1.25)2×104
=3.125×104
=31250