The position vectors of three particles are (i + 2j + 3k), (5i - 2j + 2k) and (3i - 6j + 4k) and their masses are respectively 2 kg, 1 kg and 3 kg. The position vector of a fourth mass of 4 kg, so that the centre of mass of the system may be at the origin, is
- 4 i + 4 j - 5 k
Given that →rcm=0
m1→r1+m2→r2+m3→r3+m4→r4m1+m2+m3+m4=→rcm=0
⇒m1→r1+m2→r2+m3→r3+m4→r4=0
⇒2(^i+2^j+3^k)+1(5^i−2^j+2^k)+3(3^i−6^j+4^k)+4(x^i+y^j+z^k=0
⇒(16^i−16^j+20^k)+4(x^i+y^j+z^k=0
⇒x^i+y^j+z^k=−(16^i−16^j+20^k)4
⇒→r4=−4^i−4^j−5^k