The principal value of cos-112cos9π10-sin9π10 is equal to
Finding the principal value of cos-112cos9π10-sin9π10:
cos-112cos9π10-sin9π10=cos-112cos9π10-12sin9π10=cos-1cosπ4cos9π10-sinπ4sin9π10(∵cos(π4)=12,sin(π4)=12)=cos-1cosπ4+9π10(∵cos(A+B)=cos(A)cos(B)-sin(A)sin(B))=cos-1cos23π20=cos-1cos20π+3π20=cos-1cos20π20+3π20=cos-1cosπ+3π20=cos-1-cos3π20(∵cos(π+θ)=-cos(θ))=π-cos-1cos3π20(∵cos-1(-x)=π-cos-1(x))=π-3π20=17π20
Hence, the principal value of cos-112cos9π10-sin9π10 is 17π20.