The product of (7x−4x2+2x3−5) and (3x−2) is
(7x−4x2+2x3−5)×(3x−2)
= 3x×(7x−4x2+2x3−5)−2×(7x−4x2+2x3−5) = (21x2−12x3+6x4−15x)−(14x−8x2+4x3−10)
= 21x2−12x3+6x4−15x−14x+8x2−4x3+10
= 6x4−16x3+29x2−29x+10
Multiply (7x−4x2+2x3−5) with (3x−2).
The expression obtained by multiplying (7x−4x2+2x3−5) with (3x−2) is: