The random variable X has a probability distribution P(X) of the following form, where k is some number
⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩K, if X=02k, if X=13k, if X=20, if otherwise
Determine the value of k
⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩K, if X=02k, if X=13k, if X=20, if otherwise
Given distribution of X is
X 0 1 2otherwiseP(X)k 2k 3k 0
Since, ∑P(X)=1, therefore P(0)+P(1)+P(2)+P(otherwise)=1
⇒ k+2k+3k+0=1⇒6k=1⇒k=16
Given distribution of X is
X 0 1 2otherwiseP(X)k 2k 3k 0
P(X<2)=P(0)+P(1)=k+2k=3k=3×16=12
P(X≤2)=P(0)+P(1)+P(2)=k+2k+3k=6k=6×16=1
and P(X≥2)=P(2)+P(otherwise)=3k+0=3×16=12