wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The range of function f(x)=sec2xsecx+1sec2x+secx+1 is

A
[13,3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
[13,1)(1,3]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
R(13,3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B [13,1)(1,3]
f(x)=sec2xsecx+1sec2x+secx+1

f(x)=2secxsecxtanxsecxtanxsec2x+secx+1(sec2xsecx+1)(sec2x+secx+1)2(2secxsecxtanx+secxtanx)

=secxtanx(sec2x+secx+1)[2secx1(sec2xsecx+1sec2x+secx+1(2secx+1)]

=secxtanx(sec2x+secx+1)

[2sec3x+2sec2x+2secxsec2xsecx12sec3x+2sec2x2secxsec2x+secx1]sec2x+secx+1

=secxtanx(sec2x+secx+1)2[2sec2x2]

=2secxtanxtan2x(sec2x+secx+1)2

f(x)=0

tanx=0 or 1sec2x+secx+1=0

secx=±1 secx

cosx=±1 cosx0

f(x)=sec2xsecx+1sec2x+secx+1=cos2xcosx+1cos2x+cosx+1

cosx=1f(x)=13 minima

cosx0f(x)1 but f(x)1

cosx=1f(x)=3 maxima

Range (f)=[13,1)(1,3].

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon