The correct option is D (−∞,lnπ2]
f(x)=ln(sin−1(x2+x))
We know that, x2+x∈[−14,∞) for x∈R
But domain of sin−1(x2+x) is [−1,1]
∴−14≤x2+x≤1
⇒sin−1(−14)≤sin−1(x2+x)≤sin−1(1)
We know that, input of the log function must be positive.
∴0<sin−1(x2+x)≤π2(∵sin−1(−14)<0)
⇒−∞<ln(sin−1(x2+x))≤lnπ2
Hence, range of the f(x) is (−∞,lnπ2].