The range of the functionf(x)=(x-1)(3-x) is
[0,1]
(-1,1)
(-3,3)
(-3,1)
Find the range of the given function
Given, f(x)=(x-1)(3-x)
⇒f(x)=-x2+4x-3⇒f(x)=-x2+4x-4+1⇒f(x)=1-(x-2)2
Now, 1-(x-2)2≥0
⇒1≤x≤3.....(1)
Let f(x) be y
⇒y=1-(x-2)2⇒y2=1-(x-2)2⇒x-2=1-y2⇒x=1-y2+2
from (1)
⇒-1≤1-y2≤1⇒1-y2≤1⇒1-1≤y2⇒y2≥0⇒y≥0
∴The maximum value of f(x) is when (x-2)=0
⇒fmax=1-02=1
∴ Range of f(x) is 0,1.
Hence, the correct option is A, [0,1].